Explicit Computations of the Frozen Boundaries of Rhombus Tilings

Arthur Azvolinsky

Council Rock High School South
Mentor: Alisa Knizel
MIT PRIMES Conference

May 16, 2015

Tiling Models

Definition

A tile is a 60° rhombus, also known as a lozenge. A tiling is a covering of a polygonal domain with tiles such that there are no holes nor overlaps.

Tiling Example 1

Tiling Example 2

Tiling Models

Definition

A tile is a 60° rhombus, also known as a lozenge. A tiling is a covering of a polygonal domain with tiles such that there are no holes nor overlaps.

Tiling Example 1

Tiling Example 2

Tiling Models

Definition

A tile is a 60° rhombus, also known as a lozenge. A tiling is a covering of a polygonal domain with tiles such that there are no holes nor overlaps.

Tiling Example 1

Tiling Example 2

Tiling Models

Definition

A tile is a 60° rhombus, also known as a lozenge. A tiling is a covering of a polygonal domain with tiles such that there are no holes nor overlaps.

Tiling Example 1

Tiling Example 2

Tiling Models

Tiling of a Hexagon

Tiling of a Hexagon with Smaller Tiles

Tiling Models and Perfect Matchings

Definition

A perfect matching of a hexagonal lattice G is defined as a subset of edges in G that covers each vertex exactly once.

Perfect Matching

Dual Graph

Tiling Models and Perfect Matchings

Bijection Between Tiling Models and Perfect Matchings

Tiling Models and the Height Function

Height Model

The Frozen Boundary

Theorem

Let Ω be tilable, connected polygon with $3 d$ sides. Fix $\epsilon \geq 0$. Consider the tilings of Ω by rhombi of size $\frac{1}{N}$. Then for sufficiently large N all but an ϵ fraction of the domino tilings will have a temperate zone whose boundary stays uniformly within distance ϵ of the inscribed curve.

Frozen Boundary of a Tiling of a Hexagonal Domain

Frozen Boundary of a Tiling of an Octagonal Domain

Rational Parametrization

Rational Parametrization

A rational parametrization of a curve is a parametrization such that $x(t)$ and $y(t)$ are both represented in the form $\frac{P(t)}{Q(t)}$, where $P(t)$ and $Q(t)$ are polynomials in t. Example:

$$
\begin{aligned}
& x(t)=-\frac{1-t^{2}}{1+t^{2}} \\
& y(t)=-\frac{t-t^{3}}{1+t^{2}}
\end{aligned}
$$

Nodal Cubic

Duality

Duality

Definition

Let C be an algebraic curve. Then the dual curve C^{*} is defined as the set of poles of all the tangent lines to C.

- If C is given by parametric equations $(u(t), v(t)), C^{*}$ has parametric equations

$$
\left(\frac{v^{\prime}(t)}{u^{\prime}(t) v(t)-v^{\prime}(t) u(t)}, \frac{-u^{\prime}(t)}{u^{\prime}(t) v(t)-v^{\prime}(t) u(t)}\right) .
$$

- If C is given by the homogeneous function $f(x, y, z)=0$, then the dual curve C^{*} is given by the set of lines $\left(\frac{\partial f}{\partial x}(a, b, c): \frac{\partial f}{\partial y}(a, b, c): \frac{\partial f}{\partial z}(a, b, c)\right)$ for every line $(a: b: c)$ in C.

A Curve and its Dual

Duality

Theorem

The dual of a dual curve is the original curve. That is, for any algebraic curve $C,\left(C^{*}\right)^{*}=C$.

Theorem

(Plucker's Formula) If C has degree d, then the degree d^{\prime} of C^{*} is given by

$$
d^{\prime}=d(d-1)-2 \delta-3 \kappa
$$

where δ is the number of ordinary double points of C and κ is the number of cusps of C.

Cusp and Ordinary Double Point on Curves

Duality

Theorem

The dual of a dual curve is the original curve. That is, for any algebraic curve $C,\left(C^{*}\right)^{*}=C$.

Theorem

(Plucker's Formula) If C has degree d, then the degree d^{\prime} of C^{*} is given by

$$
d^{\prime}=d(d-1)-2 \delta-3 \kappa
$$

where δ is the number of ordinary double points of C and κ is the number of cusps of C.

Cusp and Ordinary Double Point on Curves

Duality

Theorem

The dual of a dual curve is the original curve. That is, for any algebraic curve $C,\left(C^{*}\right)^{*}=C$.

Theorem

(Plucker's Formula) If C has degree d, then the degree d^{\prime} of C^{*} is given by

$$
d^{\prime}=d(d-1)-2 \delta-3 \kappa
$$

where δ is the number of ordinary double points of C and κ is the number of cusps of C.

Cusp and Ordinary Double Point on Curves

Duality

Theorem

The dual of a dual curve is the original curve. That is, for any algebraic curve $C,\left(C^{*}\right)^{*}=C$.

Theorem

(Plucker's Formula) If C has degree d, then the degree d^{\prime} of C^{*} is given by

$$
d^{\prime}=d(d-1)-2 \delta-3 \kappa
$$

where δ is the number of ordinary double points of C and κ is the number of cusps of C.

Cusp and Ordinary Double Point on Curves

Duality

Theorem

The dual of a dual curve is the original curve. That is, for any algebraic curve $C,\left(C^{*}\right)^{*}=C$.

Theorem

(Plucker's Formula) If C has degree d, then the degree d^{\prime} of C^{*} is given by

$$
d^{\prime}=d(d-1)-2 \delta-3 \kappa
$$

where δ is the number of ordinary double points of C and κ is the number of cusps of C.

Cusp and Ordinary Double Point on Curves

Theorem Concerning the Dual of the Curve that is the Frozen Boundary

Theorem

For a 3d-gonal, tilable, polygonal domain, the frozen boundary is a rational algebraic curve whose dual has degree d.

- For an n-gonal domain, if n is not divisible by 3 , we choose the lowest number $3 d$ greater than n. The degree of the dual curve in this case is then d.

> Frozen Boundary of a Tiling of a Hexagonal Domain

Frozen Boundary of a Rhombus Tiling of a Hexagon

- The hexagon we are considering has 3 pairs of equal parallel sides.

Frozen Boundary of a Tiling of a Hexagonal
Domain

Frozen Boundary of a Rhombus Tiling of a Hexagon

- The hexagon we are considering has 3 pairs of equal parallel sides.
- Both the inscribed curve and the dual to the inscribed curve are conics.

Frozen Boundary of a Tiling of a Hexagonal Domain

Frozen Boundary of a Rhombus Tiling of a Hexagon

- The hexagon we are considering has 3 pairs of equal parallel sides.
- Both the inscribed curve and the dual to the inscribed curve are conics.
- The inscribed curve is specifically an ellipse.

Frozen Boundary of a Tiling of a Hexagonal Domain

Frozen Boundary of a Rhombus Tiling of a Hexagon

Example 1

- Equations of Sides
- $y=-\sqrt{3}(x-3)$
- $y=\sqrt{3}(x-3)$
- $y=-\sqrt{3}(x+3)$
- $y=\sqrt{3}(x+3)$
- $y=-2$
- $y=2$
- Equation of Frozen Boundary

Frozen Boundary of a Tiling of a Hexagonal Domain

$$
\text { - } x^{2}+1.9166667 y^{2}-7.66667=0
$$

Frozen Boundary of a Rhombus Tiling of a Hexagon

Example 2

- Equations of Sides
- $y=0.5 x+2.5$
- $y=0.5 x-2.5$
- $y=16.66(x+2)$
- $y=16.66(x-2)$
- $y=-.66(x+2)$
- $y=-.66(x-2)$

- Equation of Frozen Boundary
- $-0.22254026037 x^{2}$ -
$0.268822 y^{2}+0.465063686975-$ $0.32382566942 x y=0$

Frozen Boundary of a Rhombus Tiling of a Hexagon

Example 3

- Equations of Sides
- $y=x-1$
- $y=x-3$
- $y=-.26795 x-1$
- $y=-.26795 x+1$
- $y=-3.73205(x-.25)$
- $y=-3.73205(x-2.6782)$
- Equation of Frozen Boundary
- $-0.404941711057 x^{2}$ $0.7087299025 y^{2}-$ $1.110655775625+$ $0.5188288546999998 x y+$ $1.4967493790500002 x-$ $1.4174623775 y=0$

Frozen Boundary of a Rhombus Tiling of an Octagon

- The octagon we are considering is shown below, with seven 120° angles and one 240° angle.

Frozen Boundary of a Tiling of an Octagonal Domain

Nodal Cubic

Frozen Boundary of a Rhombus Tiling of an Octagon

- The octagon we are considering is shown below, with seven 120° angles and one 240° angle.
- The inscribed curve is a cardioid, and the dual to the inscribed curve is a nodal cubic.

Frozen Boundary of a Tiling of an Octagonal Domain

Nodal Cubic

Frozen Boundary of a Rhombus Tiling of an Octagon

Example 1

- Equations of Sides
- $y=-\sqrt{3}(x+2)$
- $y=\sqrt{3}(x+2)$
- $y=-\sqrt{3}(x-3)$
- $y=\sqrt{3}(x-3)$
- $y=-\sqrt{3}(x-1.5)$
- $y=\sqrt{3}(x-1.5)$
- $y=-2$

Frozen Boundary of a Tiling of a Hexagonal Domain

- $y=2$
- Equation of Frozen Boundary

$$
\begin{aligned}
& -819.68+5255.08 x-10097.5 x^{2}+2939.42 x^{3}+5654.49 x^{4}- \\
& 126470 y^{2}-47651.6 x y^{2}+20749 x^{2} y^{2}+38224.3 y^{4}=0
\end{aligned}
$$

Future Directions

Hexagon with a Hole

More Complex Domain

Nephroid

Acknowledgements

- Alisa Knizel
- Professor Gorin
- Dr. Khovanova
- The MIT-PRIMES Program
- Dr. Gerovitch
- Dr. Etingof
- My Parents

References

(3) Beatrie de Tiliere

The Dimer Model in Statistical Mechanics
Laboratoire de Probabilites et Modeles Aleatoires, Universite Pierre et Marie Curie, Paris, France
11 Sep, 2014. Web. 14 May, 2015
<http://proba.jussieu.fr/ detiliere/Cours/polycop_Dimeres.pdf>
(3) Andrei Okounkov

Limit Shapes, Real and Imaginary
Department of Mathematics, Columbia University, New York, NY, 19
n.d. Web. 14 May, 2015
<http://www.math.columbia.edu/ okounkov/AMScolloq.pdf>
(3) Vadim Gorin

Random Lozenge Tilings
Vadim Gorin's professional homepage
n.d. Web. 14 May, 2015
<http://www.mccme.ru/ vadicgor/Random_tilings.html>

References

Richard Kenyon, Andrei Okounkov
Limit Shapes and the Complex Burgers Equation
Cornell University Library, Ithaca, NY
Submitted 1 Jul, 2005. Revised 8 Mar 2007. Web. 14 May, 2015
http://arxiv.org/abs/math-ph/0507007
Michal Bizzarri, Miroslav Lavicka
A Note on the Rational Parameterization of Algebraic Curves in Mathematica University of West Bohemia, Faculty of Applied Sciences, Department of Mathematics, Czech Republic
n.d. Web. 14 May, 2015
http://bizzarri.wz.cz/paper.pdf

References

Q Sendra, J. Rafael, Franz Winkler, Sonia Perez-Diaz
Rational Algebraic Curves: A Computer Algebra Approach
Springer, 2008. Web. 14 May, 2015
<http://www.springer.com/cda/content/document/cda_downloaddocument
/9783540737247-c4.pdf?SGWID=0-0-45-437905-p173751352>
Gelfand, Izrail M., Mikhail Kapranov, and Andrei Zelevinsky
Discriminants, Resultants, and Multidimensional Determinants
Birkhauser, 2008. Print.
Q Griffiths,Phillip, and Joseph Harris
Principles of Algebraic Geometry
Wiley-Interscience, 1994. Print.

